A recurrent neural network for computing pseudoinverse matrices
نویسندگان
چکیده
منابع مشابه
A Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملRecurrent Neural Networks for Computing Pseudoinverses of Rank-Deficient Matrices
Three recurrent neural networks are presented for computing the pseudoinverses of rank-deficient matrices. The first recurrent neural network has the dynamical equation similar to the one proposed earlier for matrix inversion and is capable of Moore–Penrose inversion under the condition of zero initial states. The second recurrent neural network consists of an array of neurons corresponding to ...
متن کاملA recurrent neural network computing the largest imaginary or real part of eigenvalues of real matrices
As the efficient calculation of eigenpairs of a matrix, especially, a general real matrix, is significant in engineering, and neural networks run asynchronously and can achieve high performance in calculation, this paper introduces a recurrent neural network (RNN) to extract some eigenpair. The RNN, whose connection weights are dependent upon the matrix, can be transformed into a complex differ...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 1994
ISSN: 0895-7177
DOI: 10.1016/0895-7177(94)90215-1